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Abstract. Recent results show that edge-directions of polyhedra play an important role in
(combinatorial) optimization; in particular, a d-dimensional polyhedron with |D| distinct
edge-directions has at most O(|D|d−1) vertices. Here, we obtain a characterization of the
directions of edges that are adjacent to a given vertex of a standard polyhedron of the form
P ={x :Ax = b, l �x �u}, tightening a standard necessary condition which asserts that such
directions must be minimal support solutions of the homogenous equation Ax =0 which are
feasible at the given vertex. We specialize the characterization for polyhedra that correspond
to network flows, obtaining a graph characterization of circuits which correspond to edge-
directions. Applications to partitioning polyhedra are discussed.
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1. Introduction

Dantzig’s classical Simplex method [2] has been key in the study and solu-
tion of linear optimization problems over polytopes for over half a century.
The method is based on moving along edges of the underlying polytope.
Still, with few exceptions (e.g. [1] and references therein), the focus of the
study of polyhedra in the context of linear optimization has been on the
vertices and on the facets of the underlying polytope. The conceptual idea
of moving along distinctive directions underlines a more recent study [10],
which shows how a linear combinatorial optimization oracle can be gener-
ated from an augmentation oracle.

The role of edge-directions of polyhedra in (combinatorial) optimization
has been explored more recently in [3, 4, 5, 11]. In particular, [4] and [11]
derived (independently) a unification of classic conditions (quasi-convexity
and Schur convexity) that suffice for a function over a polytope P to
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obtain a maximum at one of P ′s vertices. The unified condition requires
that the function is edge-quasi-convex on P , that is, that it is quasiconex
along lines that are parallel to the edges of P . Also, results in [3] were
enhanced in [5] to develop an algorithm that enumerates all the vertices
of a polytope. The input for the algorithm consists of a list of vectors
that contains directions of all edges of the underlying polytope. In partic-
ular, one gets a polynomial bound on the number of vertices of a poly-
tope in terms of the number of distinct edge-directions it has and in terms
of its dimension. The vertex enumeration algorithm facilitates the efficient
solution of convex combinatorial optimization problems. For example, it is
shown in [5] and [8], respectively, how the edge-directions of network poly-
hedra can be used to solve efficiently certain partitioning problems and to
determine the Nash solution of partition bargaining games.

In Section 2 we derive the main results of this paper which concerns the
derivation of a condition that is necessary and sufficient for edge-directions
of standard polyhedra, tightening a standard necessary condition. As a
result, we obtain bounds on the number of edge-directions. The results are
specialized in Section 3 to network polyhedra.

2. Edge-Directions of Polyhedra in Standard Form

Throughout this section, we consider the polyhedron in standard form
P ={x ∈ R

n : Ax = b, l � x �u} defined by A∈ R
m×n (the coefficient-matrix),

b∈R
m (right-hand side) and l ∈ (R∪{−∞})m and u∈ (R∪{+∞})n (lower and

upper bounds).
A circuit (of the matrix A) is a nonzero solution z ∈ R

n of the equal-
ity system Az = 0, whose support supp(z) := {j : zj �= 0} is inclusion-mini-
mal and whose �∞ norm ‖z‖∞ equals 1. Note that if z is a circuit then no
scalar multiple of it other than ±z is. Clearly, the number of circuits is at
most 2

∑m+1
k=1

(
n

k

)
. It is well known (cf. [7, ex. 10.14, p. 506]) that any non-

zero real solution of Az= 0 has a conformal circuit decomposition, i.e. can
be expressed as z=∑i αiz

i, where each αi is a positive real and the zis are
distinct circuits, each satisfying zi

j zj > 0 for all j ∈ supp(zi). Of course, in
such a decomposition, there are no pairs of circuits which are the negative
of each other.

A direction of a face F of P is any nonzero scalar multiple of y − x

for vectors x and y in F . Consider the equivalence relation ∼ on Rn\{0},
where d ∼d ′ when d ′ is a (nonzero) scalar multiple of d. Evidently, the set
of directions of a face of P is the union of ∼-equivalence classes to which
we refer as ∼-directions. In particular, a 1-dimensional face has a single
∼-direction.

The next lemma shows that every circuit in a conformal decomposition
of a direction of a face of P , is itself, a direction of that face.
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LEMMA 1. Suppose x and y are in P and y − x has a conformal circuit
decomposition y −x =∑q

i=1 αiz
i where each αi is a positive real and the zi ’s

are distinct circuits of A, each satisfying zi
j (y − x)j > 0 for all j ∈ supp(zi).

Then for every i, x +αiz
i is in each face of P that contains both x and y.

Proof. For each t and j :

(i) if zt
j >0, then(y −x)j >0, implying that zi

j �0 for each i and lj �xj �
xj +αtz

t
j �xj +∑i αiz

i
j =yj �uj ,

(ii) if zt
j < 0, then (y − x)j < 0, implying that zi

j � 0 for each i and lj �
yj =xj +∑i αiz

i
j �xj +αtz

t
j �xj �uj , and

(iii) if zt
j =0, then xj +αjz

t
j =xj and lj �xj =xj +αtz

t
j �uj .

So, in either case, lj � (x + αtz
t )j � uj . As we trivially have A(x + αtz

t ) =
Ax =b, we conclude that x +αtz

t ∈P.

Next, let F be a face of P that contains both x and y. As

1
q

q∑

i=1

(x +αiz
i)=

(

1− 1
q

)

x + 1
q

(

x +
q∑

i=1

αiz
i

)

=
(

1− 1
q

)

x + 1
q

y ∈F,

we have from the extremality of F that x +αiz
i ∈F for each i.

For x ∈ R
n let float(x) := {j : lj < xj < uj }. We next record two stan-

dard results about in relationships of vertices and edge-directions to circuits
and floats, see [7]. They provide, respectively, a characterization of vertices
and a necessary condition for edge-directions. The latter is tightened in the
forthcoming Theorem 5 to a characterization of edge-directions.

PROPOSITION 2. A vector x in P is a vertex of P if and only if there is
no circuit z with supp(z)⊆f loat (x).

Proof. If there is a circuit z with supp(z) ⊆ float(x) then x ± εz ∈ P for
small ε > 0. Consequently, x = 1

2 [(x + εz) + (x − εz)] is not a vertex. Con-
versely, suppose x is not a vertex. Then x = 1

2(x1 + x2) for some distinct
x1, x2 ∈P ; of course, A(x2 −x1)=0. Consider a conforming circuit decom-
position of x2 −x1, say x2 −x1 =∑i αiz

i . Now, if z1
j >0, then (x2 −x1)j >0,

that is, x2
j >x1

j ; as xj = 1
2(x1

j +x2
j ) we then have lj �x1

j <xj <x2
j �uj . Sim-

ilarly, if z1
j < 0, then x2

j <x1
j and lj �x2

j <xj <x1
j �uj . So, whenever z1

j �= 0
we have that j ∈ float(x), that is, supp(z1)⊆ float(x).

PROPOSITION 3. Every direction of a 1-dimensional face of P is a scalar
multiple of a circuit of A.
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Proof. Consider a pair of distinct vectors, say x and y, which are in
a 1-dimensional face of P , say E. Then, A(y − x) = 0 and we may con-
sider a conformal circuit decomposition of y −x, say y −x =∑q

i=1 αiz
i. By

Lemma 1, x +αiz
i ∈E for each i, implying that zi = (αi)

−1[(x +αiz
i)−x] is

a scalar multiple of the difference between two vectors in E. As dim E =1,

we conclude that each pair of zi ’s, if any, are linearly dependent. It follows
that necessarily 1 � q � 2, and if q = 2, then z2 =−z1. But, the latter can-
not happen because zi

j (y −x)j > 0 for each i and j with zi
j �= ∅. So, q = 1,

implying that, y −x is a scalar multiple of a circuit.

Proposition 3 shows that the ∼-directions of a 1-dimensional face of P

correspond to circuits. As circuits come in pairs which are the negative of
each other and each pair is determined by the set of its nonzero variables,
we get the following bound of ∼-directions of 1-dimensional faces.

COROLLARY 4. The number of ∼-directions of 1-dimensional faces of P is
bounded by

∑m+1
k=1

(
n

k

)
.

The necessary condition of Proposition 3 for directions of a 1-dimensional
face is next tightened to a condition which is both necessary and sufficient.

THEOREM 5. Suppose x is a vertex of P . Then y ∈ P \{x} lies in a
1-dimensional face of P that contains x if and only if y has a representa-
tion y =x +αz with α >0 and with z as a circuit of A for which there is no
circuit z′ of A satisfying:

supp(z′) �= supp(z), (1)

supp(z′)⊆ supp(z)∪float(x), (2)

z′
j zj �0 for each j �∈float(x). (3)

Proof. Suppose y ∈P \{x} lies in a 1-dimensional face E of P that con-
tains x. By Proposition 3, for some α>0 and circuit z of A,y −x =αz. We
will assume the existence of a circuit z′ �=z of A which satisfies (1)–(3), and
will establish a contradition to the assumption that dim E =1.

Let

β ≡min

{
αzj

z′
j

: j ∈ [supp(z′)∩ supp(z)]\float(x)

}

and

γ ≡min

{
min{(uj −xj ), (xj − lj )}

|z′
j |

: j ∈ supp(z′)∩float(x)

}
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(with the standard convention where min ∅ = +∞). Condition (3) assures
that β > 0. Also, clearly, γ > 0. So, δ ≡ min{β, γ,1}> 0. We will show that
the vectors 1

2(x + y ± δz′) are in P . To see that l � 1
2(x + y ± δz′) � u, we

recall that l � 1
2(x +y)�u and consider four cases, which are exhaustive by

condition (2):

Case I: z′
j >0 and j ∈ supp(z) \ float(x): In this case, 0<δz′

j �αzj ; thus,

lj � 1
2
(x +y)j <

1
2
(x +y + δz′)j � 1

2
(x +y +αz)j =yj �uj

and

lj �xj = 1
2
(x +y −αz)j � 1

2
(x +y − δz′)j <

1
2
(x +y)j �uj .

Case II: z′
j <0 and j ∈ supp(z) \ float(x): In this case, 0>δz′

j �αzj ; thus,

lj �yj = 1
2
(x +yαz)j � 1

2
(x +y + δz′)j <

1
2
(x +y)j �uj

and

lj � 1
2
(x +y)j <

1
2
(x +y − δz′)j � 1

2
(x +y −αz)j =xj �uj .

Case III: z′
j �= 0 and j ∈ float(x): In this case, ±δz′

j � δ|z′
j | � min{xj −

lj , uj −xj }; thus,

lj=1
2
xj + 1

2
lj − 1

2
(xj − lj )� 1

2
xj + 1

2
yj ± 1

2
δz′

j

� 1
2
xj + 1

2
uj + 1

2
(uj −xj )=uj .

Case IV: z′
j =0: In this case, 1

2(x +y ± δz′)j = 1
2(x +y)j and, lj � 1

2(x +y ±
δz′

j )�uj .

Trivially A[ 1
2(x + y ± δz′)] = b (as Ax = Ay = b and z′ is a circuit of A).

Hence, 1
2(x + y ± δz′) ∈ P. Now, as 1

2(x + y) ∈ E (x and y are in E) and
1
2(x + y) = 1

2

[ 1
2(x +y + δz′)+ 1

2(x +y − δz′)
]
, we conclude that 1

2(x + y +
δz′) ∈ E and therefore, z′ = 2

δ

{ 1
2(x +y + δz′)− 1

2(x +y)
}

is proportional to
the difference of two vectors in E. As condition (1) assures that z and z′

are linearly independent, we get a contradiction to the assumption that dim
E =1.

We next establish the sufficiency condition for y ∈ P \{x} to be in a
1-dimensional face of P that contains x. So, assume that y =x +αz is in P ,
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where α>0 and z is a circuit of A such that there is no circuit z′ of A sat-
isfying conditions (1)–(3).

Consider the vector c in R
n with

cj =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 if xj �=yj ,

0 if lj <xj =yj <uj

0 if lj =xj =yj =uj

+1 if lj <xj =yj =uj , and
−1 if lj =xj =yj <uj ,

and let F be the face of P consisting of the maximizers of cT w over w∈P.

For w ∈R
n,

cT x − cT w= (+1)

⎡

⎣
∑

lj <xj =yj =uj

(xj −wj)

⎤

⎦+ (−1)

⎡

⎣
∑

lj =xj =yj <uj

(xj −wj)

⎤

⎦

=
∑

lj <xj =yj =uj

(uj −wj)+
∑

lj =xj =yj <uj

(wj − lj ). (4)

As the terms on the right-hand side of (4) are nonnegative for each w sat-
isfying l �w�u, we have that cT w�cT x for all w∈P, implying that x ∈F ;
further, w ∈P is in F if and only if

(lj <xj =yj =uj )⇒ (wj =uj =xj ) (5)

and

(lj =xj =yj <uj )⇒ (wj = lj =xj ). (6)

In particular, we conclude that y ∈ F. Further, for j with lj = uj and for
w ∈R

n satisfying l �w �u, we have that wj = lj =uj =xj . This conclusion
and the characterization of vectors in P which are in F by (5)–(6) imply
that for all w ∈F :

[(wj �=xj ) and (xj =yj )]⇒ [lj <xj <uj ]⇔ [j ∈float(x)]. (7)

We will prove that dim(F ) = 1, by contradiction, demonstrating that if
dim(F ) �=1, then there exists a circuit z′ of A satisfying conditions (1)–(3).
So, assume that dim(F ) �=1. As z=α−1(y −x)∈ tng F , standard arguments
(e.g., [6]) show that for some w∈F\{x},w−x is not a scalar multiple of z.
As A(w−x)=0,w −x has a conformal circuit decomposition, say w−x =∑q

i=1 αiz
i. By Lemma 1 (applied to x and w), x + αiz

i ∈ F for each i. As
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w−x is not a scalar multiple of z, we conclude the existence of α′ >0 and
a circuit z′ of A with supp (z′) �= supp (z) such that x +α′z′ ∈F and

(z′
j �=0)⇒ (wj −xj )z

′
j >0; (8)

in particular, z′ satisfies condition (1). As w ∈F satisfies (8) and (7),

[(z′
j �=0) and (zj =0)]⇒ [(wj �=xj ) and (xj =yj )]⇒ [j ∈float(x)],

(9)

establishing that z′ satisfies condition (2). Finally, to establish (3), assume
that z′

j �= 0 and j �∈ float(x). Now, if z′
j > 0, (8) and w �u imply that uj �

wj >xj ; as j �∈float(x), necessarily xj = lj . Hence, yj � lj =xj and therefore
zj =α−1(y −x)j �0. Similarly, if z′

j <0, (8) and w� l imply that lj �wj <xj

and therefore xj = uj and yj � uj = xj , assuring that zj = α−1(y − x)j � 0.

This proves that when z′
j �= 0 and j �∈ float(x), z′

j zj � 0, establishing condi-
tion (3).

Proposition 2 assures that if x is a vertex of P and z′ is a circuit of A,
then supp(z′) � float(x). Consequently, condition (2) in the statement of
Theorem 5 implies that

supp(z′)∩ supp(z) �=∅. (10)

Also, given x ∈P and z∈R
n, x +αz∈P for some α >0 if and only if Az=0 and

[(zj >0)⇒ (xj <uj )] and [(zj <0)⇒ (xj >�j )], (11)

yielding a simple necessary condition for a circuit z to be a direction of a
1-dimensional face that contains x.

3. Edge-Directions of Network Polyhedra

We next examine edge-directions of network polyhedra. Henceforth, we con-
sider a finite directed graph G= (N,U) without loops where N ={1, . . . , |N |}
is the (finite) set of nodes and U ⊆N ×N \ {(i, i) : i ∈N} is the set of arcs. If
e = (r, s)∈U , we say that nodes r and s occur in e. Henceforth, we assume
that the elements of U are enumerated by 1, . . . , |U |; in particular, vectors in
(R∪{−∞}∪{+∞})|N | and (R∪{−∞}∪{+∞})|U | are identified with the cor-
responding functions on N and U , and coordinates of vectors and matrices
of corresponding size are indexed by arcs. For example, the node-arc inci-
dence-matrix of G is the |N | × |U | matrix � with �re = −1 if e = (r, i) for
some i ∈N \ {r}, �se =1 if e= (i, s) for some i ∈N \ {s}, and �ie =0 if i does
not occur in e. When A is the node-arc incidence-matrix of a graph G, we



116 SHMUEL ONN ET AL.

refer to P as a network polyhedron and to elements of P as network flows;
in particular, we let |N |=m and |U |=n. Also, circuits of A are then called
cycles; the coordinates of a cycle are −1,0 or +1 and cycles correspond to
(permutation-invariant) sequences of nodes/edges.

Of course, Proposition 3 and Corollary 4 specialize to network polyhe-
dra. Further, the representation of cycles via sequences of nodes yields the
following modification of the bound of Corollary 4.

COROLLARY 6. The number of ∼-directions of 1-dimensional faces of (the
network polyhedron) P is bounded by 1

2

∑m
k=2

(
m

k

)
(k −1)!.

Proof. The bound follows from a count of the of distinct sequences of
nodes, while factoring out permutation- and direction-invariance of repre-
sentations of cycles via sequences of nodes.

We will specialize Theorem 5 to network polyhedra. For this purpose, we
shall need the following result.

LEMMA 7. Given a cycle z and a set of arcs U ′, the following are equivalent:

(a) There exists a cycle z′ such that:

(i) supp(z′)⊆ supp(z)∪U ′,
(ii) supp(z′)∩ supp(z) �=∅,
(iii) z′

eze �0 f or each e∈U \U ′, and
(iv) supp(z′) �= supp(z).

(a-) The conditions of (a) excluding (iii).
(b) There is an enumeration e1, . . . , eq, eq+1 = e1 of the arcs in supp(z)

such that a pair of arcs in this sequence are consecutive if and only
if there is a node that occurs in both, and there exist a positive inte-
ger 1� s <q and arcs h1, . . . , hs in U ′ \ {e1, . . . , eq} such that for some
1�m<p �q,

(i) no arc in {h2, . . . , hs−1} is adjacent to any arc in {e1, . . . , eq},
(ii) h1 is adjacent to arcs em and em+1, and
(iii) hs is adjacent to arcs ep and ep+1.

(c) There exist cycles z1 and z2 with

(i) z= z1 + z2,
(ii) supp(z1)∩ supp(z2)⊆U ′ \ supp(z), and
(iii) zt

eze �0 for t =1,2 and e∈U .

(c-) The conditions of (c) excluding (iii).
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Proof. (a) ⇒ (a-) and (c) ⇒ (c-): These implications are trite.
(a-) ⇒ (b): Assume that (a-) holds. As supp(z′)∩ supp(z) �=∅, there exists

an edge g in U with z′
g �= 0 and zg �= 0. By possibly replacing z′ with −z′,

we conclude the existence of a cycle z′ which satisfied conditions (i), (ii),
(iv) of (a) and z′

g = zg for some g ∈U ; in particular, (iv) and the fact that
z′ and z are cycles imply that supp(z′)\supp(z) �=∅.

Now, standard results show that the supports of z and z′ can be ordered,
respectively, as sequences e1, . . . , eq and f1, . . . , fq ′ , such that a pair of arcs
belonging to any one of the two sequences are consecutive if and only if
there is a node that occurs in both, and where eq+1 ≡ e1 and fq ′+1 = f1.
Without loss of generality we may assume that e1 = f1 = g. As the sup-
ports of z′ and z do not coincide, there is an integer 2� i �min{q, q ′} with
fi �= ei . Let m+1�2 be the first such integer; in particular,

(i) ei =fi for i =1, . . . ,m, and
(ii) fm+1 �∈ {e1, . . . , eq} and fm+1 is adjacent to em =fm and to em+1.

It follows for some integers p and r satisfying m<p �q and m<r �q:

(iii) {fm+1, fm+2, . . . , fr}∩ {e1, . . . , eq}=∅,
(iv) no arc in {fm+2, . . . , fr−1} is adjacent to any arc in {e1, . . . , eq}, and
(v) fr is adjacent to arcs ep and ep+1.

See Figure 1 for an example with m = 2, r = 6 and p = 8. (It is noted
that p = r = m + 1 is not excluded—in this case fm+1 as the inverse of
em+1, that is, the same pair of two nodes occurs in fm+1 and in em+1,
but with a different orientation.) For e ∈ {fm+1, fm+2, . . . , fr}, z′

e �= 0 and
ze = 0 and therefore condition (i) of (a) assures that such e is in U ′. So,
{fm+1, . . . , fr}⊆U ′\{e1, . . . , eq}. It follows that s ≡r −m and h1 ≡fm+1, h2 ≡
fm+2, . . . , hs ≡fr satisfy (b).

Figure 1.
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(c-) ⇒ (a-) and (c) ⇒ (a): Assume that (c-) holds. As z2 = z − z1 is a
cycle and coordinates of cycles are restricted to −1,0 and +1, we have that
supp(z2)= [supp(z)\supp(z1)]∪ [supp(z1)\supp(z)]. It follows that supp(z) �=
supp(z1) (for otherwise supp(z2) = ∅), and that supp(z) ∩ supp(z1) �= ∅ (for
otherwise the support of z2 would equal the union of the supports of two
cycles, namely, z and z1). Finally, as supp(z1)\supp(z)⊆ supp(z2), we have
that supp(z1)\supp(z)⊆ supp(z1)∩ supp(z2)⊆U ′, the latter by condition (ii)
of (c). We have shown that z′ ≡z1 satisfies conditions (i), (ii) and (iv) of (a),
establishing (a-). Finally, trivially, if z1 satisfies condition (iii) of (c) then z′

satisfies condition (iii) of (a). So, we also have (c) ⇒ (a).
(b) ⇒ (c): Assume that (b) holds. The sequences h1, h2, . . . , hs−1,

hs, ep+1, . . . , eq, e1, . . . , em, and hs, hs−1, . . . , h2, h1, em+1, . . . , ep, are then
the supports of two cycles, say z1 and z2, respectively, with z1

ei
= zei

for
i ∈ {p + 1, . . . , q,1, . . . ,m}, with z2

ei
= zei

for i ∈ {m + 1,m + 2, . . . , p} and
with z1

hi
=−z2

hi
for i{1, . . . , s}. In particular, we have z= z1 + z2 and zt

eze �
0 for t = 1,2 and every e ∈ U , that is, conditions (i) and (iii) of (c) are
satisfied. Further, for e ∈ U with z1

e �= 0 and z2
e �= 0, we have that e ∈

{h1, h2, . . . , hs}, implying that ze = 0 and e ∈U ′. So, condition (ii) of (c) is
also satisfied.

Lemma 7 assures that, given a cycle z, the existence of a cycle z′ satis-
fying (a-) implies the existence of a cycle z′ that satisfies (a), and the exis-
tence of cycles z1 and z2 that satisfy (c-) implies the existence of cycles z1

and z2 that satisfy (c). It is noted, however, that a cycle z′ that satisfies (a-)
need not satisfy (a), and cycles z1 and z2 that satisfy (c-) need not satisfy
(c) (and no such claims are made in Lemma 7).

Lemma 7 provides alternatives to the “nonexistence of z′”-condition in
Theorem 5. Consequently, we get the following two characterizations of
directions of 1-dimensional faces of network polyhedra.

THEOREM 8. Suppose x is a vertex of the network polyhedron P . Then
y ∈P \{x} lies in a 1-dimensional face of P that contains x if and only if y

has a representation y = x + αz with α > 0 and with z a cycle which cannot
be expressed as z= z1 + z2 where supp(z1)∩ supp(z2)⊆f loat (x)\supp(z).

Given a cycle z and a set of arcs U ′ we say that U ′ can be used to bisect
z if condition (b) of Lemma 7 is satisfied.

THEOREM 9. Suppose x is a vertex of the network polyhedron P . Then
y ∈P \{x} lies in a 1-dimensional face of P that contains x if and only if y

has a representation y = x + αz with α > 0 where z is a cycle and float(x)
cannot be used to bisect z.
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Proposition 3 implies that every direction of a 1-dimensional face of a
network polyhedron P that contains a given vertex x, is a scalar multiple
of a cycle z for which there is a positive scalar α, such that x +αz∈P . We
observe that the latter is equivalent to the assertion that

[(ze >0)⇒ (xe <Ue)] and [(ze <0)⇒ (xe >Le)] for each e∈A (12)

(see the second comment following Theorem 5). Cycles z that satisfy (12)
can be determined from the nonnegative cycles of the network with node-
set N , with arc-set A′′ ∪A′′′ where A′′ ≡{e∈A :xe <Ue} and A′′′ ≡{e= (j, i)∈
A : xij >Lij } and with all lower bounds 0 and all upper bounds 1; specifi-
cally, a nonnegative cycle in this network defines a cycle satisfying (12) by
reversing the sign of the arcs in A′′′ (it is noted that A′′ ∪ A′′′ has dupli-
cate arcs when A′′ ∩ A′′′ �= ∅). Theorem 8 further shows that a cycle satis-
fying (12) is a direction of a 1-dimensional face containing x if and only
if there is no decomposition of z as a sum of two cycles z1 and z2, where
supp(z1)∩ supp(z2)⊆float(x)\supp(z) (and another characterization follows
from Theorem 9).

We next examine cycles that correspond to directions of 1-dimensional
faces in a particular example.

EXAMPLE 1: CONSTRAINED-SHAPE PARTITIONING PROBLEMS
Consider the (transportation) network whose graph is demonstrated in Fig-
ure 2 below, with the lower and upper bounds l(r,n+s) = 0 and u(r,n+s) = 1
for 1� r �n and 1� s �p and l(n+s,n+p+1) and u(n+s,n+p+1) prescribed arbi-
trarily for 1� s �p and with right-hand side vector b with br =−1 for r =
1, . . . , n, bs+n =0 for s =1, . . . , p and with bn+p+1 =n. For brevity, we let for
s =1, . . . , p, ls ≡ l(n+s,n+p+1) and us ≡u(n+s,n+p+1).

With b integral, a vertex of the corresponding network polyhedron is
known to be integral (e.g., [9]). In particular, for each vertex x, we have
that for every r =1, . . . , n, x(r,n+s) =1 for exactly s ∈{1, . . . , p}, and for each

.
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.

.

1

2

n

n+2

n+p

n+1

n+p+1

Figure 2.



120 SHMUEL ONN ET AL.

Figure 3.

s =1, . . . , p, x(n+s,n+p+1) is the number of nodes r ∈{1, . . . , n} with x(r,n+s) =
1. Thus, a vertex corresponds to an assignment of nodes 1, . . . , n to the
p destinations n+1, n+2, . . . , n+p, subject to requirements/capacity con-
straints on the number of nodes assigned to each destination; so, verti-
ces correspond to partitions of {1, . . . , n} into parts, indexed by 1, . . . , p

subject to lower and upper bounds. In Figure 3 above, we illustrate the
support of a vertex using the network representation of Figure 2. It is
observed that for a vertex x,n+p +1 occurs in every arc in float(x).

We shall use the standard representation of cycles through sequences of
nodes. Given a vertex x, a cycle z for which x +αz is feasible (that is, in
the network polyhedron) has either of the following two representations:

(i) A cycle that excludes n+p +1: For some 2�k�p, there are sequences
r1, . . . , rk and s1, . . . , sk of distinct elements from {1, . . . , n} and from
{1, . . . , p}, respectively, and z is represented by the sequence r1, n +
s1, r2, n + s2, . . . , rk, n + sk; this representation corresponds to a cyclic
change where for j = 1, . . . , k, rj is moved from part sj−1 to part sj .
The requirement that x +αz∈P for some α >0 imposes the constraint
xrj ,n+sj−1 = 1 for j = 1, . . . , k (with s0 = sk); thus, s1, . . . , sk are deter-
mined by r1, . . . , rk and the latter sequence characterizes z.

(ii) A cycle that includes n+p +1: For some 1�k�p, there are sequences
r2, . . . , rk and s1, . . . , sk of distinct elements from {1, . . . , n} and
from {1, . . . , p}, respectively, and z is represented by the sequence
n+p +1, n+ s1, r2, n+ s2, . . . , rk, n+ sk; this representation corre-
sponds to a sequential change where for j =2, . . . , k, rj is moved from
part sj−1 to part sj , with the assignment of part s1 lowered by one
element and the assignment of part sk increased by one element. The
requirement that x + αz ∈ P for some α > 0 imposes the constraints
xrj ,n+sj−1 =1 for j =2, . . . , k, xn+s1,n+p+1 >ls1 and xn+sk,n+p+1 <usk

; thus,
s1, . . . , sk−1 are determined by r2, . . . , rk and r2, . . . , rk, sk characterizes z.
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With p fixed, the number of cycles z with the first representation is
then bounded by

∑p

k=1

(
n

k

)
(k − 1)! =O(np) (we accounted for permutation-

invariance of cycle-representation), and the number of cycles z with the sec-
ond representation is bounded by

∑p−1
k=1

(
n

k

)
p=O(np). The total number of

cycles is then O(np).
Theorem 9 shows that a cycle z is a direction of a 1-dimensional face

that contains vertex x if and only if float(x)\supp(z) cannot be used to
bisect z. This requirement provides a test for a cycle to be a direction of a
1-dimensional face that contains vertex X; further, the requirement can be
used to tighten the bound on such directions. As n+p+1 occurs in every
arc in float(z), condition (b) of Lemma 7 means that:

Under (i): There exist no pairs of elements su and sv in {1, . . . , k} with
lsu <xn+su,n+p+1 <usu

and lsv
<xn+sv,n+p+1 <usv

.

Under (ii): There exist no element su in {1, . . . , k} with lsu
<xn+su,n+p+1 <

usu
. For arbitrary ls ’s and us ’s, we have no general expression to account

for the cycles satisfying the above requirement, and the bound we get on
the number of cycles is O(np).

We next consider bounds on the number of edge-directions without refer-
ence to a particular vertex x that occurs in the 1-dimensional face. In cases
where no prior information is available for edges which are necessarily in
float(x) for vertices x, the bound on the number of ∼-edge-directions is
the number of cycles. The total number of cycles under either (i) or (ii)
is
∑p

k=2

(
n

k

)(
p

k

)
k!(k − 1)!. So, the bound on the number of ∼-edge-directions

is 2
∑p

k=2

(
n

k

)(
p

k

)
k!(k −1)!

EXAMPLE 2: OPEN-SHAPE PARTITIONING PROBLEMS Consider
Example 1 with us =n+1 and ls =0 for every s, that is, there are no upper
bounds on part-capacities. In this case, every arc (n + s, n + p + 1) is in
float(x) and the only case where float(x) cannot be used to bisect z is for
cycles of the second form with k = 2. These cycles correspond to a single
switch of one element from one part to another. The number of such cycles
is then n

(
p

2

)=O(n). Consequently, the number of ∼-edge-directions for the
corresponding partition polytopes is bounded by n

(
p

2

)
.
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